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SUMMARY 

For propellant containers of large space boosters a multi-cell  configura- 

t i on  has great s t ruc tura l  and dynamic advantages. For t h i s  type of propellant 

containers the pressure dis t r ibut ion at the circular  w a l l ,  the  webs, and the 

tank bottom has been analyt ical ly  derived for  an a rb i t ra ry  vertex angle of 2nw. 

Several excitation modes have been considered, such as free and forced pro- 

pellant oscil lations.  The pressure response of the  propellant t o  t ranslat ional  

excitation i n  x- and y-direction, pitching and yawing excitations, as well as 

roll excitation about the longitudinal axis have been determined. The resu l t s  

have been applied t o  the multi-cell  configuration of 8, 10 and 12 cel ls .  The 

e r ror  involved i n  a slight geometry deviation has been estimated and found t o  

be negligible for  a l l  prac t ica l  purposes. The e f fec t  of amount of perforation 

and hole s ize  of the perforation has a l so  been stated.  
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ef fee t  ive baffle area 

l iquid damping factor  
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circular  forcing frequency 
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frequency r a t i o  of forcing t o  natural  frequency 

mass density of l iquid 

angular excitation amplitude i n  pitching exci ta t ion 

angular exci ta t ion amplitude i n  yawing excitation 

angular exci ta t ion amplitude i n  roll excitation 

l iquid surface amplitude at the container w a l l  

velocity potent ia l  of l iquid i n  rectangular container 

velocity poten t ia l  of l iquid i n  ci rcular  cylinder 



1. INTRODUCTION 

A s  space vehicles have increased i n  size, t h e i r  larger tank diameters 

have lowered the natural  frequencies of the l iquid propellants contained within, 

thus making the e f fec ts  of propellant sloshing upon the s t a b i l i t y  of the 

vehicle more c r i t i ca l ,  especially at  launch, where more than 9O$ of the t o t a l  

vehicle mass i s  usually i n  the form of l iquid propellant and the sloshing 

masses exhibit considerable values for  large container diameters. Employment 

of multi-cell  configurations instead of the conventional c i rcular  cylindrical  

she l l  structures w i l l  reduce sloshing. The introduction of longitudinal radial 

w a l l  in to  the container w i l l  reduce the sloshing masses and increase the natural  

frequencies s l ight ly .  Another poss ib i l i ty  is  the clustering of tanks w i t h  

smaller diameters, which, however, has the disadvantage of a weight penalty. 

In  1929 H. Oberth [ 11 recommended mult i - c e l l  propellant configurations 

for  space vehicles. Recently J. F. Blumrich performed various studies for  the 

application of multi-cell  propellant containers [ 2 ,  31. 

such a typical multi-cell container is presented i n  Figure 1. The partial 

cylinders t ha t  form the periphery of the container may be of monocoque, s t i f f -  

ened, o r  honey comb construction. 

tube t o  the juncture of two outer tank sections and extend longitudinally 

between the c e l l  end closure bulkheads. 

pressure and propellant equalization between the various ce l l s .  The amount 

of perforation and i t s  hole s ize ,  however, have t o  be chosen i n  such a fashion 

that the properties of the multi-cell  construction, at  leas t  w i t h  respect t o  

the propellant behavior, are preserved. This means tha t  the sloshing masses 

and natural  frequencies of the multi-cell  are  maintained. Holes too  large 

would only resu l t  i n  the propellant behaving as i n  a conventional circular 

The cross section of 

Stiffened webs extend rad ia l ly  from a center 

The webs can be perforated t o  allow 
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cyl indrical  tank with some (from the standpoint of weight) costly additional 

damping of the propellant. Each r ad ia l  web i s  attached t o  the outer p a r t i a l  

cylinder juncture and t o  the upper and lower adjacent bulkheads by means of 

extruded Y sections. Along the periphery of the cross section, the p a r t i a l  

cylinder walls are  attached t o  the spherical t rans i t ion  sections and t o  the 

skirt  by means of p a r t i a l  Y sections. 

The multi-cell  configurations have the following advantages over the 

conventional c i rcular  cyl indrical  shapes: (1) The radial webs, which are 

already present as par t  of the structure, enhance the s t a b i l i t y  of the space 

vehicle with respect t o  sloshing. 

multi-cell  boosters can be designed so tha t  weldments require only single 

pass welds, whereas circular cylindrical  boosters of comparable volume and 

s ize  require multiple pass welds. 

i b i l i t y  i n  selection of tank diameters and bulkhead arrangements, thereby 

making it possible t o  use exis t ing f a c i l i t i e s  f o r  the purpose of manufacturing 

sections of a multi-cell container of a vehicle. ( 5 )  A weight saving occurs, 

as could be shown by comparison of large multi-cell  and circular cylindrical  

space booster configurations. T h i s  indicates, i n  addition, a somewhat shorter 

vehicle for  a multi-cell  configuration, which probably could a l so  mean a larger  

fundamental bending frequency, which is a desirable feature for  the purpose of 

s t a b i l i t y  and control. (6) It i s  possible w i t h  a multi-cell  configuration, t o  

minimize fue l  residuals, shorten s k i r t  sections and suction lines, and obtain 

a shorter and lighter thrust  structure.  

be adapted t o  l i f t i n g  body shapes as needed for  recoverable boosters. 

(2) They prevent rotary sloshing. (3) Large 

(4) Multi-cell construction offers flex- 

(7) Finally, the multi-cell  concept can 

In  the following, emphasis is placed on the determination of dynamic f lu id  

pressures for  various multi-cell  configurations. For a more lucid analyt ical  
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presentation a circular  cyl indrical  sector container is  t reated.  

dis t r ibut ion i n  the container due t o  f ree  and forced osci l la t ions ( t ransla-  

t ional,  pitching, yawing, and roll-excitations) is determined fo r  an a rb i t ra ry  

vertex angle 21-r~. 

of 8, 10, and 12 ce l l s .  Since the propellant is  t reated as a f r ic t ion less  

l iquid the magnification functions of the pressure dis t r ibut ion exhibit singu- 

l a r i t i e s  at  the resonances. I n  the v ic in i ty  of these, however, f i n i t e  maximum 

values occur which influence the design of webs and container considerably. 

exact solution of damped l iquid vibrations is  pract ical ly  impossible, but a 

good approximation can be obtained by t rea t ing  each vibration mode of the l iquid 

as a one degree of freedom system and representing it as a spring-mass system. 

Since the mode shapes are  not considerably changed by the present s m a l l  damping 

of the liquids, an equivalent l inear  damping can be introduced easi ly  i n  the 

The pressure 

The r e su l t s  are  then applied t o  the multi-cell  configurations 

An 

resonance terms. 
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2. ANALYTICAL DETERMINATION OF THE PRESSURE DISTRIBUTION 

The s t a b i l i t y  of l iquid propelled space vehicles is adversely affected 

by the motion of the propellant i n  the tanks. In  order t o  remedy t h i s  situ- 

ation, subdivision of the propellant containers by longitudinal w a l l s  may be 

necessary for  large space boosters. This increases the natural  frequency of 

the propellant motion and decreases i t s  sloshing masses considerably, thus 

avoiding strong dynamic coupling between the propellant and the structure and 

thereby making s t a b i l i t y  and control easier [ $ 5 3 .  Because of the par t icular  

geometry of the multi-cell  container, an investigation of the dynamic pressures 

for  various excitations of the container i s  performed i n  order t o  predict the 

loads on the outer as well as on the c e l l  w a l l s  of the container. By knowing 

the pressure dis t r ibut ions due t o  the motion of the propellant, a better struc- 

t u r a l  optimization can be made fo r  the container, thus saving s t ruc tura l  weight 

for  the space booster. 

The pressure dis t r ibut ion i n  a circular  cyl indrical  sector container is  

therefore derived for an arb i t ra ry  vertex angle 2ncr fo r  f ree  and forced osci l -  

lat ions.  Since, only translational,  pitching, yawing, and roll excitations are 

of major importance, i n  the control and guidance maneuvers, the analysis was 

res t r ic ted  t o  those motions. The multi-cell  container is  approximated by a 

circular cylindrical  sect  or container arrangement for  which several  special  

cases, as the 1/8, 1/10, and 1/12 sector tank, are investigated. 

of the theory then w i l l  be applied t o  the t o t a l  tank system fo r  various orienta- 

t ions of the excitation. 

tank arrangement, as t h i s  w i l l  be verified by experimental resu l t s  at the 

George C. Marshall Space Flight Center, NASA, Huntsville, Alabama. 

The resu l t s  

Special emphasis will be devoted t o  the l/lO-multi-cell 
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To determine the pressure dis t r ibut ion along the webs and walls of a 

circular  cyl indrical  sector tank with a free f lu id  surface, potent ia l  theory 

[4] w i t h  l inearized boundary conditions has been used . The main excitations 

that shall be considered here are t ranslat ional  harmonic excitation, pitching 

and yawing oscil lations,  as w e l l  as ro l l ing  excitations of various excit ing 

frequencies. The flow f i e l d  of the l iquid w i t h  a f ree  f lu id  surface i n  a 

cylindrical  container of c i rcular  sector cross section, a vertex angle of 2nw, 

and a f la t  tank bottom (Fig. 2) has been obtained for a special  case by Bauer 

by special  l i m i t  considerations [ $51. 

* 

2.1. Free Oscillations. 

The velocity potent ia l  for f ree  l iquid osc i l la t ion  is  given by 

Jm (cmn 

where A and mn 

m 2) cos (- cp) a 2cY 

are constants tha t  have t o  be determined from the i n i t i a l  Bm 
conditions. The expression w i s  the natural  c i rcular  frequency of the l iquid 

and i s  
mn 

2 
(2.2) wm = a m n  E: tanh (emn $1 f o r  m,n = 0,1,2,3 ,... 

Jm The values E: a re  the posit ive roots of - (Em) = 0, and A m 2a mn and Bmn are 

constants which are determined by the i n i t i a l  displacement and velocity of the 

free  f lu id  surface. If the f ree  f lu id  surface at the time t = 0 has an i n i t i a l  

*The fac t  that  linearized theory can be used for  these investigations and can 
give good resu l t s  has been observed for the f lu id  forces of a quarter tank and 
45' segmented container. [ 6,7] 
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displacement 

and the i n i t i a l  velocity 

and i f  f(r,cp) and g(r,cp) are expanded i n  Bessel-Fourier ser ies  of the form 

w w  

m=o n=o 

the constants Am and Bm can be determined i n  terms of the expansion constants 

and g ~ n .  It i s  fmn 

- gmn 
mn h - tanh (em --) a 

Am - € 

The pressure dis t r ibut ion i n  the 

as mass density of the l iquid) 

an, 
P a t  p = -  

l iquid at a depth ( -z)  i s  therefore ( p  

-P gz 
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where the last term represents the s t a t i c  pressure, while the f i rs t  term is the 

dynamic ( linearized) pressure. It is  therefore: 

m 
a 2aJ ") cos (- cp)  - pgz 

The pressure dis t r ibut ion for f ree  osci l la t ion on the cylindrical  w a l l  of 

the container i s  obtained from (2.3) for  r = a and yields: 

h cosh[c (5 + $1 = p z  c w  m a  
h Jm/2cY (2.4) Pwa l l  mn [Amn s i n  ( w  mn t) - B~ COS ( w  mn ' t)] 

m=o n=o COSh( em a) 

m 
(Em)  cos (- 2cY cp)  - Pgz 

A t  the webs the pressure dis t r ibut ion is  at cp = 0 

cosh[ E (5 + h)] 
cosh(s 2)  

mna a 

mna 
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and at the web 

The pressure dis t r ibut ion at the tank bottom yields with z = -h the 

expression 

= p wm[A,, sin(w t) mn m=o n=o (2 '7 )  'bottom 

From these resu l t s  a l l  special  cases, such as 

cos (& 'PI f P g h  

1/8, 1/10, and 1/12 sector tank, 

can be obtained and w i l l  be given l a t e r .  (see section 4) 

2.2. Translational Oscillations. 

Excitation of the container along the x and y axis with am excitation 

frequency R yields the velocity potent ia l  

8 



x r cos cp 

(2.8) @(r,cp,z,t) = 1 ] 
y r s i n c p  

n 
where = w- is  the r a t i o  of forcing frequency t o  the natural  frequency. 

mrl 

iht t  The upper line i n  the large rectangular brackets belongs t o  the excitation x e 

i n  x-direction, while the lower one belongs t o  the excitation y e 

y-direction. It i s  

0 

istt in 
0 

1 - cos 2rra 
2TTa e =  

0 

m 4a [(-1) cos 2TTa - 13 
c =  2 2 n[m - 4a ] m 

and 
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The pressure dis t r ibut ion then is  

r 

(2.11) p = pR e 2iY x r cos cp 
0 

y r s i n  cp 
0 

2 
bm Jm (em $1 & cosh[e m a  (5 -I- $)I 

2w 
h m=o n=o (1 - <) cosh (em =-) 

A t  the cylindrical  w a l l  of the  container the pressure dis t r ibut ion i s  given by 

A t  the webs the pressure dis t r ibut ion yields 

and 

10 



(2.14) 

The pressure dis t r ibut ion a t  the tank bottom for t ranslat ional  excitation i s  

given by the expression 

x r cos cp 

y r s i n  cp = pR e 
0 

( 2*15) ’bottom 

2.3. Pitching and Yawing Oscillations. 
i R t  

If the container is excited about the 5 or T axis  (see Figure 2), Xoe 

o r  eoeibM‘ respectively is  the potent ia l  of the l iquid yields f o r  pitching 

8, upper l i ne )  and yawing (x, lower l ine) .  

Qorz cos cp 

(2.16) @(r,cp,z,t) = - iRe im {Lorn s in  ,I - ~~~1 
c o r n  
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where 

T2 abmn mn 
2 h c =  mn 

E mn cosh(emn g) 

6 g6mn mn h 
2 a  

€ B mn mn h 
2 a  

[ 2  sinh (- h) - (- - + -) cosh (- -)] 
a an2 C m 

E: 6 mn h 
2a 2 a  

F : h  gBmn mn 

aR 
[(T - -) sirih (- -) - 2 si& 

The pressure dis t r ibut ion i s  then 

0, r z  cos cp 

(2.18) P = PQ2eRit sin - A] 

h - P g b  - $ 

A t  the c i rcular  w a l l  r = a the pressure dis t r ibut ion is 



A t  the webs it i s  

and a t  cp = 2m the pressure dis t r ibut ion yields 

The pressure dis t r ibut ion a t  the container bottom i s  
L 

+ pgh 

It should be noted i n  th i s  section that the coordinate system has i ts  or igin i n  

the vertex ax is  i n  the middle between the tank bottom and the quiescent f lu id  

surface. 

obtained from these resu l t s  by superposition of the above results.  

A l l  specialcases and orientations of a multi-cell  tank system can be 



2.4. Roll Oscillations. 

For roll excitation cp = Toeistt about the z axis (here the or igin is  again 

located i n  the quiescent f lu id  

2 i C k  (2.25) @(r,cp,z,t) = ish, cpoe 

surface) the velocity potent ia l  yields : 

2m-1 cosh [ s  ( 2  + &)I cos(- 2cy c p ) ]  2m-1,n a a 

The pressure dis t r ibut ion i n  the container is then 

14 



w w  
a-1 
2cY 
- 

[: - ‘r2m-1) 

and the pressure dis t r ibut ion a t  the circular  w a l l  i s  

- Pg2 

A t  the webs the pressure dis t r ibut ion i s  given by 



The pressure dis t r ibut ion a t  the container bottom yields 
a-1 
2cY W 16a COS(- 'p) 

(2m-1)[ (a-1) - 16a2] ( 2*31) 'bottom 

201 
) cosh(s -)[ h (211-1)~ - 16cu2] 

ZnI-l,n a - ' a - l ,n  

From these resul ts  all special  cases, such as 1/8, 1/10, and 1/12 multi-cell  

container, can be obtained and w i l l  be presented i n  expl ic i t  form l a t e r  (see 

section 4). 
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3. INTRODUCTION OF W I N G  

In  a f r ic t ion less  l iquid (Section 2) the magnification function of the 

pressure dis t r ibut ion exhibits s ingular i t ies  a t  the resonances. That is, a t  a 

forcing frequency R = w the magnitude of the pressure tends toward inf ini ty .  

All previous resu l t s  a r e  therefore not applicable i n  the immediate v ic in i ty  

of these Eigenfrequencies of the system. In  fact ,  f i n i t e  values occur i n  the 

resonances and are  due to the damping of the liquid, which has been neglected 

i n  the potent ia l  theory solution of the problem. An exact solution of damped 

liquid osci l la t ions is  prac t ica l ly  impossible and another approach must be 

chosen t o  account f o r  damping. 

mn 

Considering each vibrationalmode of the f lu id  as a degree of freedom and 

representing it as a spring-mass system, damping can be introduced i n  the 

ana ly t ica l  resu l t s  of the poten t ia l  flow theory by rewriting the resonance 

terms (1 - f )  as a complex expression (1 - f + 2 i  yn%), where i i s  the 

imaginary uni t  and y 

vibrational mode. 

has been introduced. 

i n  a smooth walled container usually of a magnitude i n  the order of 0.001 

< y < 0.02. 

semi-empirical formula by Miles, which has been improved by Eauer r61. 

is the  damping fac tor  associated w i t h  th i s  par t icular  n 

With th i s  approach l inear  velocity proportional damping 

The values yn have to be obtained by experiments and are  

With baff les  i n  the container the damping can be obtained by a 

It i s  

(3.1) 
d 

y = c  a e 
-4.6 - p / 2  

w/a 

where d i s  the depth of the baff le  below the quiescent free f lu id  surface, & 
i s  the maximum f ree  f l u i d  surface displacement a t  the container w a l l ,  and 7 i s  

the effective baffle area ra t io  blocking the cross sectional area. The constant 

C i s  obtained from experimental drag measurements of f la t  p la tes  i n  an osc i l -  



la t ing f l u i d  and has approximately the value 2.8 i n  a circular  cylinder. 

completely submerged ring baff le  the baf f le  area i s  

In a 

2 2 w  w B = Q I  [na 2 na cy 
- n ( a q )  1 = a [ 2  - ;I 

where w i s  the width of the ring baffle. 

In the expressions (2.11) t o  (2.15) if one introduces now the value 
2 2 (1 - Xn + 2 i  ymn Xn) instead of (1 - xn) i n  the denominator of the 

double series,  one obtains the pressure dis t r ibut ion f o r  damped f lu id  osci l -  

lations. 

and yawing excitations, and i n  (2.28) t o  (2.31) f o r  the case of r o l l  excitation. 

The same is t rue  f o r  the expressions (2.17) i n  the case of pitching 

From the  measured response we w i l l  be able t o  obtain an approximate 

value f o r  the damping factors  ymno 
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4, SPECIAL CONTAINERS 

I n  the equations of section 2, we now introduce the values 7-r/4J n/5 

and n/6 for the vertex angle. 

the multi-cell  container of 8, 10, 12 ce l l s ,  

This yields the pressure dis t r ibut ion for 

4.1. Pressure Distributions i n  Multi-Cell Tank of Eight Cells. 

For a container of vertex angle U/4 the value c! = l/8 and the pressure 

dis t r ibut ions for f ree  osci l la t ions are: 

z+h cash [ e  (-)I 
J4 ( 8  )cos 4mcp - pgz m n a  

m m n  - Bm COS (Urn%)] 

h cash [ e ,  $ 

where the 8 's are the zeros of J '  0 and are  represented i n  Table 1. 

A t  the  webs the pressure distributions are 

mn 4m = 

m=o n=o 

z+h COsh [ e  (-)I r m a  - Bm cos (w mn t ) j  h J4m -> a - Pgz 
COSh (emn --) 

m=o n=o 



The pressure dis t r ibut ion a t  the container bottom is 

J4m 
cosh (E: -) 

') cos 4mcp + pgh h 
m a  

- 13,, cos(w *)I mn 

For t rans la t iona l  excitation w i t h  

J@( - l ) m + l  2r2-01 , = 4[ ( -1)mE-21 , c =  
0 n(16m2 - 1) 0 T i  Tr(16m2-l) 

a = -  7T , a m =  (4.5) 

J4m + 2p + 1 4as (16m2 - 1) mn 
2 2  1 (4m + 2p - 1 ) ( 4 m  + 21-1 + 37 (4.6) bm = - 1 6 m  ) Jbm(smn) p=o 

the pressure dis t r ibut ion at  the cylindrical  w a l l  of the container i s  

x a  

[ "1 bmJ4,(em)L cosh [Em(.?)] cos 4my 

m=o n=o 2 h 
(1 - k) cash ( E m  $ 

+ r c 
A t  the webs the pressure dis t r ibut ion is  

20 



A t  the container bottom the pressure dis t r ibut ion yields 

2 istt 
= pa e (4e10) 'bottom , 

+ I  m=o n=o t 
For pitching and yawing excitation the pressure dis t r ibut ion at the 

cyl indrical  container w a l l  is 

21 



where the values Cmn and D, are given by the equations (2.17) 

appearing b 

dis t r ibut ion at  the web, cp = 0 and cp = IT/)+, 

For the 

the expression (4.6) has t o  be introduced. 

is  given by 

The pressure mn 

1 [C, cosh (emn E) 

Z 
Dm sinh (em a 11 Wrn J4m(cmn E) 

A t  the container bottom it is  

2 ihtt = - p Q e  (4e14) 'bottom 

h -0 r cos cp 

h - P& - 5) 

€ mnh 
Ll a a  cash (- -) 



For roll excitation the pressure dis t r ibut ion at the cyl indrical  w a l l  i s  

= p$dcpoeim[(cp - n/8) + 5 cos (8m - 4) cp 
(4.15) P ~ A L L  

‘IT ( 2m-1) 2[ (2m-1) +1/2 1 m = l  

cos (8m-4) - pgz 1 
are given by and e2m-1,n The values fZm - l,n 

- - 
e2m-l, n 

are  2m-1, n and e the roots of J6m-4(~) = 0. 

The pressure dis t r ibut ion at  the webs, cp = 0 and cp = ‘IT/&, is 

where the upper sign re fers  t o  the pressure at  the web cp = O  and the lower sign 

t o  tha t  of the web cp 5 ; .4 
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The pressure dis t r ibut ion at  the container bottom is given by 

4.2. Pressure Distributions i n  Multi-Cell Tank of Ten Cells. 

For the  multi-cell  container of ten  ce l l s  the vertex angle assumes the 

For f ree  osci l la t ions the pressure d i s -  value n/5, i.e. the value CY = 1/10. 

t r ibut ion at  the tank w a l l  is 

where the ern’s are the zeros of J 

f o r  m = 0, 1, 2, 3, 4. 

’ ( e )  = 0 and are presented in  Table 2 f o r  5m 

A t  the  webs the pressure distributions are 

h 
c o c o  cosh[e (5 + --)I m a  

J5m (4*20 Pweb = p (-l)u wm [Am s i n  (wmt )- B~ cos Cwmt)] 
m=on=o cosh( em k) ”s 
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.. 
A t  the bottom of the container the pressure dis t r ibut ion z = -h is given by 

+ P g h  

For t rans la t iona l  exci ta t ion w i t h  

2.9389 . 
I T '  (4.22) a. = c =  0 -9549 

0 'IT 

( -l)m+T 0.2351 . 
n [m2 - 0.041 

a =  m J 
c =  J-(-l)m* 0.8090 -11 . o.4 

'IT [m2 - 0.041 m 

'5m + 2p + 1 1 (5m + 21~. + 3)(5m + 2p - 1) 
4a G (25m2 - 1) rn (4.23) brn = 

the pressure dis t r ibut ion at the wall r = a i s  

A t  the webs the pressure dis t r ibut ion yields 
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cosh [em(: + $)I 
(1 - c) cosh (emn h g) m=o n=o 

and 
c 

The pressure dis t r ibut ion at the container bottom is  given by the expression 

For pitching and Yawing excitations the pressure distribution yields w i t h  

the expressions C and Dm (2.17) the values mn 
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az cos 

(4.28) Pwall = -pQ2ei'.[[ X a z  e: s i n ?  ml - ci"i 1 [C mn cosh ( e  m a  2) 
Xo m=o n=o 

7 

A t  the webs the pressure dist r ibut ion is 

ana 
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A t  the container bottom it is 

h -8 r - cos cp 

-X r - sin cp Xo m=on=o m 2 a  

c 
2ia{  [ E ] - [ e ~ ~  f [ C  cosh(--) m h  - PO e 

0 2  

For roll excitation the pressure distribution at the cylindrical  w a l l  i s  

given by 

1 

where the values f'&-l,n and are given by 

and the  value c are the r o e s  of J' (e) = 0. The pressure dis t r ibut ion 

at the webs cp = 0 and cp = n/5 i s  
2m-i, n 1Om-5 

28 



f2m-l,n - e2m-l,nl J5(2m-1)(E2m-1,n VI2 a 2m-1,n cosh 
4- 
- T r L  L m = l  n=o 

where the upper sign refers  t o  the pressure of the web cp = 0 and the  lower 

sign t o  tha t  of the web cp = n/5. 

The pressure distribution of the container bottom is given by 

4.3. Pressure Distributions i n  Multi-Cell Tank of Twelve Cells. 

For a container of vertex angle n/6, cy is  assuming the value cy = 1/12 and 

the pressure distributions f o r  free osc i lh t ions  are: 
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(4.35) Pwall  = p L wmn[~,, s i n  (wmnt) 
m=o n=o 

h cosh [ G  (2  + $1 m n a  cos (6mcp) - pgz - Bmn COS ( W m n t ) ]  h J6m ('mn) cash ( e  -) m a  

where the values e 

A t  the webs the pressure distributions are 

are the zeros of J '  ( e )  = 0 and are presented i n  Table 3. mn 6m 

h cosh [ €  (2  3. ,)I r m n a  4 - Pgz h J6m ('mn a - Bm COS ( w m t ) ]  
cash (em g) 

z h .  
(g + $1 r cosh [ e  

- Bmn COS ( w m t ) ]  J6m ('m -1 a - Pgz 
cosh (em $) 

The pressure dis t r ibut ion at the container bottom is  

For t ranslat ional  excitation with 



(4.39) a = -  3 c =  2EhLD 
o n  0 TT 

6r ( -l)mJ3-1] mi.1 
c =  6 (-1) a =  

m n[ 36m2-1] $36m2 - 11 

the pressure dis t r ibut ion at the cylindrical  w a l l  of the container is 

2 h a x  m o  
bm J6m (em) 7h, cash [em (I -f. ,)I 

m=o n=o (1 - &) cosh (emn E )  

A t  the webs the pressure dis t r ibut ion yields 

@E] bmn J h ( e m  E) & cosh [ e  m a  (2  + h)] a 
(1 - 6) cosh (em h --) - Pgz 

m=o n=o 

and 



A t  the container bottom the pressure distribution i s  

2 istt 
= pR e (4*44) 'Bottom 

2) & cos (6mcp) 
2 m=o n=o (1 - k) cosh ( e  h) m a  

For pitching m d  yawing excitation the pressure distribution at the 

cylindrical  w a l l  of the tank i s  given by 

a z  cos cp 
m 

(4*45 P,11 1 [C,, cosh (em i) 
m=o n=o 

where again the values C 

the appearing b,, the expression (4.41) has t o  be introduced. 

distribution at the web, cp = 0 and cp = n/6, is  given by 

and Dm are  given by the equations (2.17) For mn 
The pressure 
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and 

r z  cos 

= - p Q e  [emn cosh (emn :) 
(4047) ’web p n / 6  m=o n=o 

A t  the container bottom it is 

’ C’oJ m=o n=o 

For r o l l  excitation the pressure dis t r ibut ion at the cyl indrical  wall 

yie Ids 

co 6 1  1 
4 -  cos [ 6  (2m-1) cp] ~ - 

Tr (2m-1)2 [3 (2m-1) f 11 m = l  n=o Tr 
(4.49) Pwall  = phl a Toe 
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are  given by and e2m-l,n 2m-1, n where the values f 

and 

The pressure dis t r ibut ion at the webs cp = 0 and cp = 7~/6 i s  

where the upper sign refers  t o  the pressure at  the web cp = 0 and the lower sign 

t o  the web w a l l  cp = n/6. The pressure a t  the container bottom yields the 

expression 
r- r 

..I 1 - 



TABLE 1 
ZEROS OF J'4m( Em) = 0 

1 2 3 4 5 6 
4m=4 4m=8 4m=12 h=16 4m=20 4m=24 

3 *83171 
7 * 015 59 
10 e 17347 
13 32369 
16 . 47063 
19.61586 
22 e 76008 
25 e90367 
29.04683 
32.18968 

5 31756 
E. 68191 
15.96411 
19 . 19603 
25 58976 

31 -93854 
35 io392 

9.28240 

22.40103 

28.76784 

9 . 59581 13.82109 
14.11541 18.74485 

21.22907 26.24604 
24 . 58720 29.72898 
27.88928 33.13145 

17.77401 22.62927 

31.15533 36.48055 
34,39663 39.79194 
37.62008 43.07549 
40 -83018 46.33777 

l8 10419 
23.26394 
27 34733 
34.71248 
38.21206 
41 . 6433 1 
48.37069 
51.68742 

31,11194 

45.02543 

22.26759 
27.71172 
31 97366 
35 -87393 
39 58453 

50 . 13856 
53 - 54503 
5 6 9163 5 

43.17654 
46 . 68717 

26.41110 

36.53336 
40 55913 
48 05260 
51.63937 
55 *I5787 
58 . 62415 

32.10885 

44 . 37289 

62.04927 

TABIZ 2 
ZEROS OF J' 5m( em) = 0 

1 2 3 4 5 
5m=5 5m=10 5m=15 5m=20 5m=25 

3 083171 
7.01559 
10 17347 
13 0 32369 
16 . 47063 
19.61586 
22.76008 
25 e90367 
32 . 18968 29.04683 

6 . 41565 13.71594 

13.98706 20.22302 

20.57549 27 ~8202 

10 . 51932 16.44767 

17 0 3x79 23 76072 

23 *BO357 30 953451 
27.01030 33.84197 
30.20284 37.11800 
33.38544 40.37107 
36 . 56077 43.60677 

16 * 95879 
22 e 14194 
26.17774 
29.90658 
33 -47845 
36 -95417 
40.365 10 
43 72963 
50.36251 
47 . 05946 

22.26759 

31 * 97366 
35.87393 
39 0 58453 
43 17654 

50.13856 
53 54503 
56.91635 

27.71172 

46,68717 

27.44454 
33 020179 
37.66484 
41.7205 7 
45 0 55917 
49.26009 

56.40029 
59 -88125 
63 . 31966 
52.86538 
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ZEROS OF J ' G ~ (  Emn> = O 

1 2 3 4 X O  6m=6 6m= 12 6m=18 6m=24 

3 *83171 
7.01559 

10.17347 
13 * 32369 
16.47063 
19 . 61586 
22 e 76008 
25 e90367 
29 A4683 
32.18968 

7 50132 
11.73427 
15.26802 
18 . 63738 
2 1.93169 
25.18391 

31.61787 
34.81339 
37 099964 

28.40847 

13.82109 
18 . 7448 5 
22.62927 
26.24604 
39 072898 
33 - 13145 
36.48055 
39 79194 
43 07549 
46 33777 

20.18882 
25.49518 
29.67010 
33 ' 50392 
37 e 16041 
40.70680 
44.17823 
47 59513 
50 97113 
54 31522 

26.41110 

40.55913 

48.05260 
51 * 63937 
55 e15787 
58.62415 

44.37289 

62.04927 



5. ESTIMATE OF ERROR 

The ac tua l  s i ze  of the  multi-cell  container deviates s l i gh t ly  from that 

of the one t reated i n  the analysis, and it i s  desirable t o  have an estimate of 

the difference of the dynamic pressure i n  a multi-cell  container and that of 

an equivalent c i rcular  sector tank. A c i rcu lar  cyl indrical  sector container 

was preferred f o r  the ana ly t ica l  investigation since t h i s  type of container 

could be analyt ical ly  treated.  

walls a r e  coordinate surfaces and permit the separation of the variables of 

the problem. 

is  the f a s t e r  assessment of the e f fec t  of the various parameters involved. 

analyt ical  formula f o r  the pressure dis t r ibut ion exhibits very lucidly the 

effect  of parameters, which could not have been performed w i t h  a numerical 

high speed computer program. 

This is  due t o  the f a c t  that the container 

Another point f o r  preferring the geometry of the chosen container 

An 

In  order t o  assess the e r ror  involved i n  t h i s  s l i gh t  deviation of the 

Two container geometry, a very extreme comparison i s  performed as follows. 

configurations which can be analyt ical ly  assessed a re  chosen f o r  comparison. 

Existing experimental evidence indicates t h a t  the e f fec t  of propellent 

sloshing i n  other container geometries can be approximated by making the f ree  

f lu id  surface areas and l iquid volumes equal. In  the very extreme case here 

t reated of a rectangular container as compared with the c i rcu lar  cylinder if 

the pressure difference is comparatively small, one can assume that it w i l l  be 

small f o r  the sector and multi-cell  tank. 

a the  r a d i i  of curvature deviates only s l ight ly ,  those of the here treated 

case compare a tank with a f i n i t e  radius of curvature a and the in f in i t e  

radius of curvature of a rectangular container (Figure 3). 

While i n  the latter configuration 
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To perform t h i s  analysis the quiescent f r ee  f lu id  surface areas have t o  

be made equal. 

area i s  na , while f o r  a rectangular container of square cross section the 
2 f ree  f lu id  surface area i s  given by b 

Therefore b has t o  be chosen t o  be b = a fi. 

For a c i rcu lar  cylinder tank of radius a the f r e e  f lu id  surface 

2 

where b i s  the width of one side wall. 

The velocity potent ia l  of the 

rectangular container due t o  t ranslatory excitation can be determined t o  be 
7 

Y (x,z,t) = xoR s i n  & 

and the pressure dis t r ibut ion on the r ight  wall x = b yields with b = a f i  

The square of the natural c i rcular  frequencies i s  

i s  the damping fac tor  of the liquid. and Y2n-l .  

For a cyl indrical  container with circular  cross section the velocity 

potent ia l  i s  given by 
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The pressure dis t r ibut ion a t  the container w a l l  r = a yields then the 

expre s s ion. 
E 

cosh [” a (z+h)]f 
h 

2 = x 0 p a  cos szt cos cp %a11 0 n=l  (E,‘ -1) eosh( cn g) (1-% + “yni\) 

where E- a r e  the roots of the first derivative of the Bessel function of 
11 

f i r s t  kind and 

frequencies is  

The difference 

5 

f i rs t  order ( J ~  

given by 

(e,) = 0) .  The square of the c i rcu lar  natural  

i n  the pressure 

indicate the 

P,=b - pWa11 

seriousness 

2 = xop” cos 

of 

stt 

dist r ibut ion of these two containers 

the difference i n  the container 
? 

( 2n-1) JF (z+h)l 
a . cosh[ - - 

2n-1) JTT h 
cosh[ ‘ -I a 1 

h which has been evaluated f o r  = 4.0, 0 

should 

E n f a cos cp cosh [- (z+h)] 

(1-\ + 2iynqn) ( en - l)cosh( en ;t) 
a 

-2 2 h 

5 ep 5 TT/~, and various depths ( -z) e 

The natural  frequencies f2n-l of the rectangular container and those of the 

circular  cylinder fn  agree quite well, a s  can be seen i n  Table 4. 
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CONPARISON O F  NATUXAL FRE&UENCIES O F  CIRCULAR 
C Y L m R I C A L  CONTAINER AND IiECTANGULAR TANK OF EQUAL SURFACE AKEXS 

n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 21595 

0.36748 

0.46500 

0 054453 

0.6136 

0.67553 

0 e 73218 

0 * 78473 

0 -83397 

0.88042 

o 21188 

o . 36700 

0 47379 

0.56060 

0.63566 

0 70275 

0 * 76397 

0.82063 

0.87363 

0 *92359 

The numerical resu l t s  f o r  the pressure difference a r e  presented i n  

Figures 4 through 6. 

container. A container diameter of 2meters was used i n  the numerical evaluation 

and the f l u i d  height r a t io  was a = 4.0. 

then given by g/a = 10.0, 

determined versus forcing frequency f o r  various depth locations ( -z)  i n  the 

A damping of 4% c r i t i c a l  is assumed t o  be present i n  the 

h The r a t io  of gravity t o  tank radius i s  

With these values the pressure difference was 

container and various angular 

1/2 inch and a weight density 

paxo = 0.24 

positions cp. 

of the l iquid of 62.4 lb/ft3 it i s  

For an excitation amplitude of 

2 lbs see 

f t 2  

2 

2 
lbs sec 

(inch) 
= 0.00168 
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The pressure difference is  therefore the indicated ordinate multiplied w i t h  

2 the value R and 1.68.10-~. 
-2 n2 = 20 sec 

amount of (l/lO) ps i .  

smaller due t o  the breaking of the f r ee  f lu id  surface and a larger damping. 

Off resonance the pressure difference, of course, reduces dras t ica l ly  t o  values 

of about (1/100) p s i  and (1/3OO) ps i .  A t  a depth of 0.2h under the  f l u i d  surface 

the maximum pressure difference is  about 0.04 psi ,  while a t  half' the depth it 

i s  about 0.007 psi .  

a r e  very similar except that the magnitude i s  s l igh t ly  reduced. 

For instance for cp = 0 near the first resonance 

and the pressure difference a t  the f r ee  f lu id  surface is  i n  the 

This i s  a very conservative maximum value which w i l l  be 

For q = rr/8 and T T / ~  the effects  on the pressure difference 

From th i s  very rough estimate of f i n i t e  and in f in i t e  radius of curvature 

of the container wall it can be seen that i n  the case of a scalloped multi-cell  

container and the multi-cell  container of c i rcular  sector cross section the 

pressure difference due t o  the s l igh t ly  different  container geometries is negligible, 

a s  long a s  the surface areas a r e  made equal, i.e. as  long as  the radius of the 

sector container i s  chosen such that the cross-sectional areas of the container 

configurations a re  equal. 
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6. CONCLUSIONS 

The pressure dis t r ibut ion along the circular  container wall, the webs, 

and the container bottom has been given analytica 

modes f o r  a c i rcu lar  cyl indrical  sector container 63 

based on potent ia l  theory could be introduced i n t  
2 2 

the values ( l-%n) as ( 1-Xn + 2iymn’fln), where y is  the damping fac tor  of 
mn 

the (mn)th l iquid mode and is obtained by experiments. The pressure d i s t r i -  

butions f o r  various special  tank configurations, such as the multi-cell  

container with 8, 10, 12 c e l l s  has been obtained and their  analyt ical  expressions 

a re  presented i n  section 4. Since the actual  multi-cell  container deviates 

s l igh t ly  from the  one t reated here, an estimate of error  i n  the pressure w a s  

performed f o r  a rectangular and circular  cylindrical  container; it was found 

that even i n  t h i s  extreme case of f i n i t e  and in f in i t e  radius of c u k t u r e  of 

the container wall the e r ror  remains small f o r  a l l  prac t ica l  purposes. 

approximation of the scalloped tank w i t h  that  of the multi-cell  c i rcular  

cylindrical  sector container is  therefore well jus t i f ied .  

difference remains small (Figures 4, 5, 6) and the natural  frequencies agree 

very well (Table 4). 

The 

The pressure 

The webs of the multi-cell container can be perforated for the pwpose of 

pressure and propellant equalizations between the various ce l l s .  The amount 

of perforation and i t s  hole diameter, however, have t o  be chosen i n  such a 

fashion that the l iquid dynamic properties of the multi-cell  construction are 

preserved. This means that the sloshing masses that are considembly reduced 

by the insertion of longitudinal walls i n  a c i rcu lar  cylindrical  container and 

the natural  frequencies which a r e  increased f o r  a multi-cell  container a r e  

maintained. If the perforation has too large an area o r  if the hole s ize  

42 



i s  too large, the propellant would behave a s  i n  a conventional c i rcular  

cylinder. It would exhibit the low natural  frequencies and the large sloshing 

masses of a c i rcu lar  cylinder container, and the perforated webs would only 

increase the damping of the propellant, which indeed would be a costly damping 

from the standpoint of weight considerations. Results [ 91 pertaining t o  

infomation about perforation and hole s ize  a r e  presented i n  Figure 7. The 

effect  on the fundamental natural  frequency of the amplitude of excitation, 

percent and hole diameter of perforation, and l iquid density and viscosity a r e  

exhibited f o r  a multi-cell  container of eight ce l l s .  It has been found 

previously by many experimentors that a 23-25$ opening w i l l  provide the best 

perforation. A s  t o  the s ize  of the hole of the perforation, the resul ts  

clearly exhibit that the  diameter should be chosen a t  least smaller than 

V 

2/3 ,1/3 d <  
a 

4 (i .e.  Re < 10 ) 

which yields 

7 where v = - i s  the viscosity, g the longitudinal acceleration, a the container 
P 

radius and xo the excitation amplitude. 

Recommendation: It i s  recommended that  the numerical evaluation f o r  various 

oriented container configurations be performed f o r  a t  l ea s t  the multi-cell  

container w i t h  ten ce l l s .  Nomogram type of presentations f o r  natural  f r e -  

quencies and pressure dis t r ibut ions should be worked out t o  assist the designer 

w i t h  a fast reference f o r  evaluation. 

correlated with the anticipated experimental resu l t s  of a t en  c e l l  container 

a t  the Marshall Space Flight Center, NASA. 

The results,  furthermore, should be 
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FIGURE I: CROSS SECTION OF MULTI-CELL CONTAINER 
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FIGURE 3: COMPARISON OF RECTANGULAR AND CIRCULAR CONTAINERS 
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FIGURE 4: PRESSURE OIWERENCE IN RECTANGULAR AND CIRCULAR CONTAINERS 
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FIGURE 5 :  PRESSURE DIFFERENCE IN RECTANGULAR AND CIRCULAR CONTAINERS 

49 



0 1 .o 2.0 3.0 4.0 6.0 7.0 8.0 $2 
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